Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Sci Immunol ; : eabp8966, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2251435

RESUMEN

Life-threatening 'breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-ß. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.

2.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1950563

RESUMEN

Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease, including multisystem inflammatory syndrome in children (MIS-C) and chilblain-like lesions (CLLs), otherwise known as "COVID toes," remains unclear. Studying multinational cohorts, we found that, in CLLs, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity. MIS-C and CLL serum samples displayed decreased NET degradation ability, in association with C1q and G-actin or anti-NET antibodies, respectively, but not with genetic variants of DNases. In adult COVID-19, persistent elevations in NETs after disease diagnosis were detected but did not occur in asymptomatic infection. COVID-19-affected adults displayed significant prevalence of impaired NET degradation, in association with anti-DNase1L3, G-actin, and specific disease manifestations, but not with genetic variants of DNases. NETs were detected in many organs of adult patients who died from COVID-19 complications. Infection with the Omicron variant was associated with decreased NET levels when compared with other SARS-CoV-2 strains. These data support a role for NETs in the pathogenesis and severity of COVID-19 in pediatric and adult patients.


Asunto(s)
COVID-19 , Trampas Extracelulares , Actinas/metabolismo , Adulto , COVID-19/complicaciones , Niño , Desoxirribonucleasa I , Humanos , Neutrófilos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica
3.
Bastard, Paul, Vazquez, Sara, Liu, Jamin, Laurie, Matthew T.; Wang, Chung Yu, Gervais, Adrian, Le Voyer, Tom, Bizien, Lucy, Zamecnik, Colin, Philippot, Quentin, Rosain, Jérémie, Catherinot, Emilie, Willmore, Andrew, Mitchell, Anthea M.; Bair, Rebecca, Garçon, Pierre, Kenney, Heather, Fekkar, Arnaud, Salagianni, Maria, Poulakou, Garyphallia, Siouti, Eleni, Sahanic, Sabina, Tancevski, Ivan, Weiss, Günter, Nagl, Laurenz, Manry, Jérémy, Duvlis, Sotirija, Arroyo-Sánchez, Daniel, Paz Artal, Estela, Rubio, Luis, Perani, Cristiano, Bezzi, Michela, Sottini, Alessandra, Quaresima, Virginia, Roussel, Lucie, Vinh, Donald C.; Reyes, Luis Felipe, Garzaro, Margaux, Hatipoglu, Nevin, Boutboul, David, Tandjaoui-Lambiotte, Yacine, Borghesi, Alessandro, Aliberti, Anna, Cassaniti, Irene, Venet, Fabienne, Monneret, Guillaume, Halwani, Rabih, Sharif-Askari, Narjes Saheb, Danielson, Jeffrey, Burrel, Sonia, Morbieu, Caroline, Stepanovskyy, Yurii, Bondarenko, Anastasia, Volokha, Alla, Boyarchuk, Oksana, Gagro, Alenka, Neuville, Mathilde, Neven, Bénédicte, Keles, Sevgi, Hernu, Romain, Bal, Antonin, Novelli, Antonio, Novelli, Giuseppe, Saker, Kahina, Ailioaie, Oana, Antolí, Arnau, Jeziorski, Eric, Rocamora-Blanch, Gemma, Teixeira, Carla, Delaunay, Clarisse, Lhuillier, Marine, Le Turnier, Paul, Zhang, Yu, Mahevas, Matthieu, Pan-Hammarström, Qiang, Abolhassani, Hassan, Bompoil, Thierry, Dorgham, Karim, consortium, Covid Hge, French, Covid study group, consortium, Comet, Gorochov, Guy, Laouenan, Cédric, Rodríguez-Gallego, Carlos, Ng, Lisa F. P.; Renia, Laurent, Pujol, Aurora, Belot, Alexandre, Raffi, François, Allende, Luis M.; Martinez-Picado, Javier, Ozcelik, Tayfun, Keles, Sevgi, Imberti, Luisa, Notarangelo, Luigi D.; Troya, Jesus, Solanich, Xavier, Zhang, Shen-Ying, Puel, Anne, Wilson, Michael R.; Trouillet-Assant, Sophie, Abel, Laurent, Jouanguy, Emmanuelle, Ye, Chun Jimmie, Cobat, Aurélie, Thompson, Leslie M.; Andreakos, Evangelos, Zhang, Qian, Anderson, Mark S.; Casanova, Jean-Laurent, DeRisi, Joseph L..
Science immunology ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1918542

RESUMEN

Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals;however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population. Type I IFN auto-Abs are found in 20% of hypoxemic, mRNA vaccinated COVID-19 patients despite SARS-CoV-2 neutralizing antibodies. Description

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA